平成23年度 京都大学大学院理学研究科(数学・数理解析専攻)

数学系 入学試験問題 数学 I

- ⊗ 1 から 5 までの全問を解答せよ.
- ⊗ 解答時間は3時間である.
- ⊗ 参考書・ノート類の持ち込みは 禁止 する.

[注意]

- 1. 指示のあるまで開かぬこと.
- 2. 解答用紙・計算用紙のすべてに、受験番号・氏名を記入せよ.
- 3. 解答は各問ごとに別の解答用紙を用い、問題番号を各解答用紙の枠内に記入せよ.
- 4. 1 問を 2 枚以上にわたって解答するときは、つづきのあることを用紙下端に明示して次の用紙に移ること.
- 5. 提出の際は、解答用紙を問題番号順に重ね、計算用紙をその下に揃え、記入した面を外にして一括して二つ折にして提出すること.
- 6. この問題用紙は持ち帰ってよい.

[記号]

以下の問題で \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} はそれぞれ,自然数の全体,整数の全体,有理数の全体,実数の全体,複素数の全体を表す.また、 \mathbb{R}^n の元 $x=(x_1,\ldots,x_n)$ に対して $|x|=\sqrt{x_1^2+\cdots+x_n^2}$ と書く.

- $oxed{1}$ V を \mathbb{C} 上の有限次元ベクトル空間とし、 $f:V \to V$ を一次変換とする。 $W_1,\ W_2$ を V の部分空間で, $V=W_1+W_2,\ f(W_1)\subset W_1,\ f(W_2)\subset W_2$ をみたすとする。f の W_1 への制限を $f|_{W_1}\colon W_1\to W_1$ とおき,f の W_2 への制限を $f|_{W_2}\colon W_2\to W_2$ とおく。
 - (1) $f|_{W_1}$ の最小多項式を $P_1(x)$, $f|_{W_2}$ の最小多項式を $P_2(x)$ とおく. f の最小多項式は $P_1(x)$, $P_2(x)$ の最小公倍元であることを示せ.
 - (2) $f|_{W_1}$, $f|_{W_2}$ が対角化可能であるとき, f も対角化可能であることを示せ.

ただし, P(x), $Q(x) \in \mathbb{C}[x]$ に対し, P(x) が Q(x) で割り切れるとき, P(x) は Q(x) の倍元であるという。また, P(x), Q(x) の最小公倍元とは, P(x), Q(x) の倍元のうち次数が最小のモニック多項式のことをいう。

2 区間 [0,1] 上の実数値連続函数 f(x) は f(0)=0, f(1)=1 をみたしている. このとき、極限値

$$\lim_{n\to\infty} n \int_0^1 f(x) x^{2n} dx$$

を求めよ.

- \square L を階数 2 の自由アーベル群 \mathbb{Z}^2 の部分群で $(a,b),(c,d)\in\mathbb{Z}^2$ により生成されるものとする. このとき、以下の問に答えよ.
 - (1) 商群 \mathbb{Z}^2/L の位数が有限になるための必要十分条件を a,b,c,d を用いて表せ.
 - (2) $abcd \neq 0$ をみたし、かつ \mathbb{Z}^2/L の位数が有限となるもののうちから、
 - (i) $\mathbb{Z}^2/L = \{0\}$ となる例
 - (ii) \mathbb{Z}^2/L が非自明な巡回群になる例
 - (iii) \mathbb{Z}^2/L が巡回群にならない例

を各々1つずつ与えよ.

- |4| nを2以上の自然数とする.
 - (1) n 次元実射影空間 $\mathbb{R}P^n$ の基本群 $\pi_1(\mathbb{R}P^n)$ を計算せよ. ただし, n 次元単位球面 S^n が単連結であることを用いてよい.
 - (2) $\mathbb{R}P^n$ から単位円 S^1 への連続写像は、常に定値写像とホモトピックであることを示せ.

- $\boxed{5} \quad \mathbf{函数} \ f(z) = \frac{e^{(1+i)z}}{(e^z+1)^2}, \ z \in \mathbb{C} \ \mathrm{C関する以下の問に答えよ}.$
 - (1) L>0 とし、複素平面上の 4 点 $L,\ L+2\pi i,\ -L+2\pi i,\ -L$ を頂点とする 長方形の内部にある f(z)dz の極と留数を求めよ.
 - (2) 広義積分 $\int_{-\infty}^{\infty} f(x) dx$ を計算せよ.